Skip to content Skip to sidebar Skip to footer

Soal Menentukan Garis Singgung Lingkaran Yang Memotong Sumbu X Di Titik P Dan Q

Diketahui lingkaran x2 + y2 – 8x – 6y + 12 = 0 memotong sumbu x di titik P dan Q. Tentukan persamaan garis singgung lingkaran di P dan Q!

Jawab:
Memotong sumbu x berarti y = 0
x2 – 8x + 12 = 0
(x – 2)(x – 6) = 0
x = 2 atau x = 6,  titik potongnya (2,0) dan (6,0)

Garis singgung di titik (2,0)
x1x + y1y + (A/2)(x + x1) + (B/2)(y + y1) + C = 0
2x + (-8/2)(x + 2) + (-6/2)(y + 0) + 12 = 0
2x – 4x – 3y – 8 + 12 =0
-2x – 3y + 4 = 0 sama dengan 2x + 3y – 4 = 0


Garis singgung di titik (6,0)
x1x + y1y + (A/2)(x + x1) + (B/2)(y + y1) + C = 0
6x + (-8/2)(x + 6) + (-6/2)(y + 0) + 12 = 0
6x – 4x – 3y – 24 + 12 = 0
2x – 3y -12 = 0

Post a Comment for "Soal Menentukan Garis Singgung Lingkaran Yang Memotong Sumbu X Di Titik P Dan Q"